The Sun - A Snapshot




Rotation period: .

Inclination of equator to orbit:

Mean orbital speed:

Mean distance from the earth




The Sun is the star at the center of the Solar System. It is almost perfectly spherical and consists of hot plasma interwoven with magnetic fields. It has a diameter of about 1,392,684 km, about 109 times that of Earth, and its mass (about 2×1030 kilograms, 330,000 times that of Earth) accounts for about 99.86% of the total mass of the Solar System. Chemically, about three quarters of the Sun's mass consists of hydrogen, while the rest is mostly helium. The remainder (1.69%, which nonetheless equals 5,628 times the mass of Earth) consists of heavier elements, including oxygen, carbon, neon and iron, among others.

The Sun's stellar classification, based on spectral class, is G2V, and is informally designated as a yellow dwarf, because its visible radiation is most intense in the yellow-green portion of the spectrum and although its color is white, from the surface of the Earth it may appear yellow because of atmospheric scattering of blue light  In the spectral class label, G2 indicates its surface temperature of approximately 5778 K (5505 °C), and V indicates that the Sun, like most stars, is a main-sequence star, and thus generates its energy by nuclear fusion of hydrogen nuclei into helium. In its core, the Sun fuses 620 million metric tons of hydrogen each second. Once regarded by astronomers as a small and relatively insignificant star, the Sun is now thought to be brighter than about 85% of the stars in the Milky Way galaxy, most of which are red dwarfs. The absolute magnitude of the Sun is +4.83; however, as the star closest to Earth, the Sun is the brightest object in the sky with an apparent magnitude of −26.74. The Sun's hot corona continuously expands in space creating the solar wind, a stream of charged particles that extends to the heliopause at roughly 100 astronomical units. The bubble in the interstellar medium formed by the solar wind, the heliosphere, is the largest continuous structure in the Solar System.

The Sun is currently traveling through the Local Interstellar Cloud in the Local Bubble zone, within the inner rim of the Orion Arm of the Milky Way galaxy. Of the 50 nearest stellar systems within 17 light-years from Earth (the closest being a red dwarf named Proxima Centauri at approximately 4.2 light-years away), the Sun ranks fourth in mass.

The Sun orbits the center of the Milky Way at a distance of approximately 24,000–26,000 light-years from the galactic center, completingone clockwise orbit, as viewed from the galactic north pole, in about 225–250 million years. Since our galaxy is moving with respect to thecosmic microwave background radiation (CMB) in the direction of the constellation Hydra with a speed of 550 km/s, the Sun's resultant velocity with respect to the CMB is about 370 km/s in the direction of Crater or Leo

The mean distance of the Sun from the Earth is approximately 149.6 million kilometers (1 AU), though the distance varies as the Earth moves from perihelion in January to aphelion in July. At this average distance, light travels from the Sun to Earth in about 8 minutes and 19 seconds. The energy of this sunlight supports almost all life on Earth by photosynthesis, and drives Earth's climate and weather. The enormous effect of the Sun on the Earth has been recognized since prehistoric times, and the Sun has been regarded by some cultures as adeity. An accurate scientific understanding of the Sun developed slowly, and as recently as the 19th century prominent scientists had little knowledge of the Sun's physical composition and source of energy. This understanding is still developing; there are a number of present-day anomalies in the Sun's behavior that remain unexplained.

Name and etymology

The English proper noun Sun developed from Old English sunne (around 725, attested in Beowulf), and may be related to south. Cognates to English sun appear in other Germanic languages, including Old Frisian sunne, sonne, Old Saxon sunna, Middle Dutch sonne, modern Dutchzon, Old High German sunna, modern German Sonne, Old Norse sunna, and Gothic sunno. All Germanic terms for the Sun stem fromProto-Germanic *sunnon.

In relation, the Sun is personified as a goddess in Germanic paganism; Sól/Sunna. Scholars theorize that the Sun, as Germanic goddess, may represent an extension of an earlier Proto-Indo-European sun deity due to Indo-European linguistic connections between Old Norse Sól, Sanskrit Surya, Gaulish Sulis, Lithuanian Saule, and Slavic Solntse.

The English weekday name Sunday is attested in Old English (Sunnandæg; "Sun's day", from before 700) and is ultimately a result of aGermanic interpretation of Latin dies solis, itself a translation of the Greek heméra helíou. The Latin name for the star, Sol, is widely known but is not common in general English language use; the adjectival form is the related word solar. The term sol is also used by planetary astronomers to refer to the duration of a solar day on another planet, such as Mars. A mean Earth solar day is approximately 24 hours, while a mean Martian 'sol' is 24 hours, 39 minutes, and 35.244 seconds.



The Sun is a G-type main-sequence star comprising about 99.86% of the total mass of the Solar System. It is a near-perfect sphere, with an oblateness estimated at about 9 millionths, which means that its polar diameter differs from its equatorial diameter by only 10 km. As the Sun consists of a plasma and is not solid, it rotates faster at its equator than at its poles. This behavior is known as differential rotation, and is caused by convection in the Sun and the movement of mass, due to steep temperature gradients from the core outwards. This mass carries a portion of the Sun’s counter-clockwise angular momentum, as viewed from the eclipticnorth pole, thus redistributing the angular velocity. The period of this actual rotation is approximately 25.6 days at the equator and 33.5 days at the poles. However, due to our constantly changing vantage point from the Earth as it orbits the Sun, the apparent rotation of the star at its equator is about 28 days. The centrifugal effect of this slow rotation is 18 million times weaker than the surface gravity at the Sun's equator. The tidal effect of the planets is even weaker, and does not significantly affect the shape of the Sun.

The Sun is a Population I, or heavy element-rich, star. The formation of the Sun may have been triggered by shockwaves from one or more nearby supernovae. This is suggested by a high abundance of heavy elements in the Solar System, such as gold and uranium, relative to the abundances of these elements in so-called Population II (heavy element-poor) stars. These elements could most plausibly have been produced by endergonic nuclear reactions during a supernova, or bytransmutation through neutron absorption inside a massive second-generation star.

The Sun does not have a definite boundary as rocky planets do, and in its outer parts the density of its gases drops exponentially with increasing distance from its center ]Nevertheless, it has a well-defined interior structure, described below. The Sun's radius is measured from its center to the edge of the photosphere. This is simply the layer above which the gases are too cool or too thin to radiate a significant amount of light, and is therefore the surface most readily visible to the naked eye.

The solar interior is not directly observable, and the Sun itself is opaque to electromagnetic radiation. However, just as seismology uses waves generated by earthquakes to reveal the interior structure of the Earth, the discipline of helioseismology makes use of pressure waves (infrasound) traversing the Sun's interior to measure and visualize the star's inner structure Computer modeling of the Sun is also used as a theoretical tool to investigate its deeper layers.



The core of the Sun is considered to extend from the center to about 20–25% of the solar radius. It has a density of up to 150 g/cm3 (about 150 times the density of water) and a temperature of close to 15.7 million kelvin (K). By contrast, the Sun's surface temperature is approximately 5,800 K. Recent analysis ofSOHO mission data favors a faster rotation rate in the core than in the rest of the radiative zone. Through most of the Sun's life, energy is produced by nuclear fusion through a series of steps called the p–p (proton–proton) chain; this process converts hydrogen intohelium. Only 0.8% of the energy generated in the Sun comes from the CNO cycle.

The core is the only region in the Sun that produces an appreciable amount of thermal energy through fusion; inside 24% of the Sun's radius, 99% of the power has been generated, and by 30% of the radius, fusion has stopped nearly entirely. The rest of the star is heated by energy that is transferred outward from the core and the layers just outside. The energy produced by fusion in the core must then travel through many successive layers to the solar photosphere before it escapes into space as sunlight or kinetic energy of particles.

The proton–proton chain occurs around 9.2×1037 times each second in the core of the Sun. Since this reaction uses four free protons(hydrogen nuclei), it converts about 3.7×1038 protons to alpha particles (helium nuclei) every second (out of a total of ~8.9×1056 free protons in the Sun), or about 6.2×1011 kg per second.Since fusing hydrogen into helium releases around 0.7% of the fused mass as energy, the Sun releases energy at the mass-energy conversion rate of 4.26 million metric tons per second, 384.6 yotta watts(3.846×1026 W)  or 9.192×1010 megatons of TNT per second. This mass is not destroyed to create the energy, rather, the mass is carried away in the radiated energy, as described by the concept of mass-energy equivalence.

The power production by fusion in the core varies with distance from the solar center. At the center of the Sun, theoretical models estimate it to be approximately 276.5 watts/m3,[51] a power production density that more nearly approximates reptile metabolism than a thermonuclear bomb.[b] Peak power production in the Sun has been compared to the volumetric heats generated in an active compost heap. The tremendous power output of the Sun is not due to its high power per volume, but instead due to its large size.

The fusion rate in the core is in a self-correcting equilibrium: a slightly higher rate of fusion would cause the core to heat up more and expand slightly against the weight of the outer layers, reducing the fusion rate and correcting the perturbation; and a slightly lower rate would cause the core to cool and shrink slightly, increasing the fusion rate and again reverting it to its present level.

The gamma rays (high-energy photons) released in fusion reactions are absorbed in only a few millimeters of solar plasma and then re-emitted again in random direction and at slightly lower energy. Therefore it takes a long time for radiation to reach the Sun's surface. Estimates of the photon travel time range between 10,000 and 170,000 years. In contrast, it takes only 2.3 seconds for the neutrinos, which account for about 2% of the total energy production of the Sun, to reach the surface. Since energy transport in the Sun is a process which involves photons in thermodynamic equilibrium with matter, the time scale of energy transport in the Sun is longer, on the order of 30,000,000 years. This is the time it would take the Sun to return to a stable state if the rate of energy generation in its core were suddenly to be changed.

After a final trip through the convective outer layer to the transparent surface of the photosphere, the photons escape as visible light. Each gamma ray in the Sun's core is converted into several million photons of visible light before escaping into space. Neutrinos are also released by the fusion reactions in the core, but unlike photons they rarely interact with matter, so almost all are able to escape the Sun immediately. For many years measurements of the number of neutrinos produced in the Sun were lower than theories predicted by a factor of 3. This discrepancy was resolved in 2001 through the discovery of the effects of neutrino oscillation: the Sun emits the number of neutrinos predicted by the theory, but neutrino detectors were missing 23 of them because the neutrinos had changed flavor by the time they were detected.



The visible surface of the Sun, the photosphere, is the layer below which the Sun becomes opaque to visible light. Above the photosphere visible sunlight is free to propagate into space, and its energy escapes the Sun entirely. The change in opacity is due to the decreasing amount of H ions, which absorb visible light easily. Conversely, the visible light we see is produced as electrons react with hydrogen atoms to produce H ions. The photosphere is tens to hundreds of kilometers thick, being slightly less opaque than air on Earth. Because the upper part of the photosphere is cooler than the lower part, an image of the Sun appears brighter in the center than on the edge or limb of the solar disk, in a phenomenon known aslimb darkening. Sunlight has approximately a black-body spectrum that indicates its temperature is about 6,000 K, interspersed with atomicabsorption lines from the tenuous layers above the photosphere. The photosphere has a particle density of ~1023 m−3 (this is about 0.37% of the particle number per volume of Earth's atmosphere at sea level; however, photosphere particles are electrons and protons, so the average particle in air is 58 times as heavy).

During early studies of the optical spectrum of the photosphere, some absorption lines were found that did not correspond to any chemical elementsthen known on Earth. In 1868, Norman Lockyer hypothesized that these absorption lines were because of a new element which he dubbed helium, after the Greek Sun god Helios. It was not until 25 years later that helium was isolated on Earth.



The parts of the Sun above the photosphere are referred to collectively as the solar atmosphere. They can be viewed with telescopes operating across the electromagnetic spectrum, from radio through visible light to gamma rays, and comprise five principal zones: the temperature minimum, thechromosphere, the transition region, the corona, and the heliosphere. The heliosphere, which may be considered the tenuous outer atmosphere of the Sun, extends outward past the orbit of Pluto to the heliopause, where it forms a sharp shock front boundary with the interstellar medium. The chromosphere, transition region, and corona are much hotter than the surface of the Sun. The reason has not been conclusively proven; evidence suggests that Alfvén waves may have enough energy to heat the corona.

The coolest layer of the Sun is a temperature minimum region about 500 km above the photosphere, with a temperature of about 4,100 K.[60] This part of the Sun is cool enough to support simple molecules such as carbon monoxide and water, which can be detected by their absorption spectra.

Above the temperature minimum layer is a layer about 2,000 km thick, dominated by a spectrum of emission and absorption lines. It is called thechromosphere from the Greek root chroma, meaning color, because the chromosphere is visible as a colored flash at the beginning and end of total eclipses of the Sun.The temperature in the chromosphere increases gradually with altitude, ranging up to around 20,000 K near the top  In the upper part of chromosphere helium becomes partially ionized.


Above the chromosphere, in a thin (about 200 km) transition region, the temperature rises rapidly from around 20,000 K in the upper chromosphere to coronal temperatures closer to 1,000,000 K. The temperature increase is facilitated by the full ionization of helium in the transition region, which significantly reduces radiative cooling of the plasma. The transition region does not occur at a well-defined altitude. Rather, it forms a kind of nimbus around chromospheric features such as spicules and filaments, and is in constant, chaotic motion. The transition region is not easily visible from Earth's surface, but is readily observable fromspace by instruments sensitive to the extreme ultraviolet portion of the spectrum.

The corona is the extended outer atmosphere of the Sun, which is much larger in volume than the Sun itself. The corona continuously expands into space forming the solar wind, which fills all the Solar System.The low corona, near the surface of the Sun, has a particle density around 1015–1016 m−3. The average temperature of the corona and solar wind is about 1,000,000–2,000,000 K; however, in the hottest regions it is 8,000,000–20,000,000 K. While no complete theory yet exists to account for the temperature of the corona, at least some of its heat is known to be from magnetic reconnection.

The heliosphere, which is the cavity around the Sun filled with the solar wind plasma, extends from approximately 20 solar radii (0.1 AU) to the outer fringes of the Solar System. Its inner boundary is defined as the layer in which the flow of the solar windbecomes superalfvénic—that is, where the flow becomes faster than the speed of Alfvén waves.Turbulence and dynamic forces outside this boundary cannot affect the shape of the solar corona within, because the information can only travel at the speed of Alfvén waves. The solar wind travels outward continuously through the heliosphere, forming the solar magnetic field into aspiral shape,until it impacts the heliopause more than 50 AU from the Sun. In December 2004, the Voyager 1 probe passed through a shock front that is thought to be part of the heliopause. Both of the Voyager probes have recorded higher levels of energetic particles as they approach the boundary.

Magnetic field

The Sun is a magnetically active star. It supports a strong, changing magnetic field that varies year-to-year and reverses direction about every eleven years around solar maximum. The Sun's magnetic field leads to many effects that are collectively called solar activity, including sunspots on the surface of the Sun, solar flares, and variations in solar wind that carry material through the Solar System. Effects of solar activity on Earth includeauroras at moderate to high latitudes, and the disruption of radio communications and electric power. Solar activity is thought to have played a large role in the formation and evolution of the Solar System. Solar activity changes the structure of Earth's outer atmosphere.

All matter in the Sun is in the form of gas and plasma because of its high temperatures. This makes it possible for the Sun to rotate faster at its equator (about 25 days) than it does at higher latitudes (about 35 days near its poles). The differential rotation of the Sun's latitudes causes its magnetic fieldlines to become twisted together over time, causing magnetic field loops to erupt from the Sun's surface and trigger the formation of the Sun's dramaticsunspots and solar prominences (see magnetic reconnection). This twisting action creates the solar dynamo and an 11-year solar cycle of magnetic activity as the Sun's magnetic field reverses itself about every 11 years.

The solar magnetic field extends well beyond the Sun itself. The magnetized solar wind plasma carries Sun's magnetic field into the space forming what is called the interplanetary magnetic field. Since the plasma can only move along the magnetic field lines, the interplanetary magnetic field is initially stretched radially away from the Sun. Because the fields above and below the solar equator have different polarities pointing towards and away from the Sun, there exists a thin current layer in the solar equatorial plane, which is called the heliospheric current sheet.At the large distances the rotation of the Sun twists the magnetic field and the current sheet into the Archimedean spiral like structure called the Parker spiral. The interplanetary magnetic field is much stronger than the dipole component of the solar magnetic field. The Sun's 50–400 μT (in the photosphere) magnetic dipole field reduces with the cube of the distance to about 0.1 nT at the distance of the Earth. However, according to spacecraft observations the interplanetary field at the Earth's location is about 100 times greater at around 5 nT.

Chemical composition

The Sun is composed primarily of the chemical elements hydrogen and helium; they account for 74.9% and 23.8% of the mass of the Sun in the photosphere, respectively.All heavier elements, called metals in astronomy, account for less than 2% of the mass. The most abundant metals are oxygen (roughly 1% of the Sun's mass), carbon (0.3%), neon (0.2%), and iron (0.2%).

The Sun inherited its chemical composition from the interstellar medium out of which it formed: the hydrogen and helium in the Sun were produced by Big Bang nucleosynthesis. The metals were produced by stellar nucleosynthesis in generations of stars which completed their stellar evolution and returned their material to the interstellar medium before the formation of the Sun The chemical composition of the photosphere is normally considered representative of the composition of the primordial Solar System. However, since the Sun formed, the helium and heavy elements have settled out of the photosphere. Therefore, the photosphere now contains slightly less helium and only 84% of the heavy elements than the protostellar Sun did; the protostellar Sun was 71.1% hydrogen, 27.4% helium, and 1.5% metals.

In the inner portions of the Sun, nuclear fusion has modified the composition by converting hydrogen into helium, so the innermost portion of the Sun is now roughly 60% helium, with the metal abundance unchanged. Because the interior of the Sun is radiative, not convective (see Radiative zone above), none of the fusion products from the core have risen to the photosphere.

The solar heavy-element abundances described above are typically measured both using spectroscopy of the Sun's photosphere and by measuring abundances in meteorites that have never been heated to melting temperatures. These meteorites are thought to retain the composition of the protostellar Sun and thus not affected by settling of heavy elements. The two methods generally agree well




Copyright(C) 2007 - 2020. All rights reserved.